Gifts of Unknown Things

Sometimes, in a book actually not really about quantum physics, I unexpectedly come across a text that particularly appeals to me in the context of my idea that quantum physics has an important message for humanity. A message that is still not understood or not been recognized by the majority of scientists today. Lyall Watson however is a scientist who recognizes the message.

A scientist of stature

Malcolm Lyall-Watson is a widely oriented scientist of stature. He is a botanist, zoologist, biologist, anthropologist, paleontologist and ethologist. He was, among other things, director of the Johannesburg Zoo and has produced nature series for the BBC. Watson is an adventurer and also a captivating storyteller. This has resulted in a series of books of which I have only recently read just this one which leaves me wanting more.

I am concerned here with a passage in his book ‘Gifts of Unknown Things’ where he summarizes adequately quantum physics in three pages, in an attempt to explain his experiences on a small Indonesian island where the local population accepts extraordinairy phenomena as an element of everyday life. By the way, I can recommend the entire book to you, if only for its captivating reading pleasure.

An infinite book as a metaphor of the state wave

The text fragment in question: Watson presents in it a very understandable metaphor about quantum physical reality as a book where every set of two pages contains one of the infinite possible states of the universe. Where the book will open is unpredictable, but the book is bound and used in such a way that it does show a preference for certain pages. As long as the book is still closed, everything is possible, all pages – all possibilities – are still there. That is comparable to the situation where the state wave has not yet collapsed. The opening of the book is thus the measurement, the collapse of the state wave by the observation of the reader with only one pair of pages now being readable. But in fact everything is possible, all the pages are still there. Sumo – mentioned in the text – is one of the inhabitants of the island who, because of his belief system, cannot accept what he sees, until a dramatic outcome is needed.

A Modern Physics Problem

“Modern physics has a problem. In Newton's time, concern was directed largely at measuring things, because he believed, as many people still do today, that everything was knowable, and it was just a matter of clear thinking and lots of hard work. It was felt that the collection of information was vital and that when enough was available, the rest could be calculated or inferred. So classical physics for two centuries concerned itself almost entirely with the motion of bodies and the force of fields.

Then Heisenberg showed it was impossible to determine exactly the position and momentum of any body at a single instant in time. This discovery in itself would have been of only academic importance if it had not also shown that changes were necessary in some of the most basic equations of physics. The changes were made, and they resulted in the development of quantum mechanics, and this has begun to bring about a major philosophical revolution.

Physics is concerned with systems. As an example, let's choose a system made up of a number of moving particles that happen to look like the letters of the alphabet. The old physics had its classical equations of motion which were supposed to be able to calculate the complete state of such a system. Let's say that what they had in mind was an arrangement something like this page of this book. A pattern in code which would need deciphering but which could be used, they thought, like the Rosetta Stone, to understand the language and to predict the form of all future states, the pattern on all pages that might precede or follow this one.

The new physics says fine, but there is a problem. There is no such thing as a single state. Each system has an infinite number of possible states, and it exists in all of them simultaneously. Quantum mechanics recognizes not the page, but the whole book as a more valid expression of the pattern of a system at any one moment in time. In fact, it goes a lot further than this thin book can, because it needs an infinite number of pages.

Now, when we try to observe a physical system, when we attempt to make a measurement, we do not find a particle moving at a number of velocities, located in widely different positions. We catch the system in one of its infinite number of states. When we open a book, we see only one of the many different pages. With the book lying closed on the table in front of you, all those pages or states already exist, and any page is possible. The probability is not necessarily equal; there is usually a bias built into the binding which makes the book open more easily at a well-thumbed page. But with the covers closed, the system is open. It is a multiple state and enters a single state only when a reader comes along to take a measurement or make an observation.

In the words of quantum mechanics, an observer collapses the system into one of its component states. He is not part of the system, he is not one of the letters that make up the pattern on the pages, and he cannot be included in the equations. But neither can he be left out, because without him there cannot be any particular pattern. Without an observer, there is no description; but no description can be considered complete unless it takes into account the effects of the observer who made it. There is no such thing as an objective experiment.

This is the measurement problem, and it has left much of the physics community in a state of considerable disquiet. There are inevitably a number of unconvinced Newtonians (like Sumo) who are doing their best to discredit this interpretation, but so far they have had very little success. The uncertainty just won't go away. In fact, it gets more alarming all the time.

When a system is observed, it collapses into one of its states. But what happens when there is more than one observer?

Science refuses to accept as valid any measurement made by only one person. The experiment has to be repeatable and produce the same result. So when two scientists in widely separated laboratories succeed in making the same measurement, when they get the book to open at precisely the same page, there must be some factor which at that moment puts them on common ground. They must be linked. This linkage, which provides them both with the same page number, is a procedure that we call experimental protocol. It has to be followed precisely or the experiment will "fail"—the book will open elsewhere. It is a very strict procedure with a precise set of rules which require that individuality be held as far as possible in abeyance. It suggests that the scientific approach is a ritual, an incantation, a set of magic words and gestures for producing the desired effect.

And what if there are two observers stationed at the same vantage point? Assume that the two scientists involved in this work happened to be together in the laboratory when the experiment was completed successfully for the very first time. They were exploring new territory, so there was no established protocol; they were simply following a hunch. They collapsed the system and exposed one of its states. Both made the same observation. They saw the same page. This could happen only if the observation process itself united them in some way, or if one of them saw the state first and imposed his view of it on the other. Both sides in the quantum-mechanical argument support the theory of relativity which says it is not possible to put either of the observers first. So that leaves us with only one possibility. Observers of the same state at any moment in time are coupled. And if there are more than two, they are grouped. And as joint observers are often too far apart to hold hands or make any normal physical contact during the process of observation, they must be united by some nonphysical factor.

There is only one nonphysical entity that is nevertheless real and sufficiently widespread to be held responsible.

Our consciousness.”

From: Gifts of Unknown Things by Lyall Watson published by Inner Traditions International and Bear & Company, © 1991. All rights reserved.
http://www.Innertraditions.com  
Reprinted with permission of publisher.

I totally agree.

Consciousness taken to court

It is the neurologists who still largely believe in classical physics, through which they want to explain consciousness as an emergent phenomenon of the brain. European neurologists are busy working on the Human Brain Project. This is one of the largest research projects in the world. In its final phase (April 2020 – March 2023) the HBP’s focus is to advance three core scientific areas – brain networks, their role in consciousness, and artificial neural nets – while further expanding EBRAINS. They expect – and hope – that their digital copy of the neural netwerk that we harbor in our skulls will become aware. For the sake of this emerging digital awareness, I hope not. In the main media I regularly come across articles that subscribe, rather uncritically, to this emergence idea. Fortunately, I also come across critical reviews, such as here in The Telegraph.

The neurologist’s message: your consciousness is a hallucination. It’s a recursive pattern within a pattern within a pattern of neuronal activity.

If you repeat a message often enough, a significant portion of the recipients will simply believe it. Just look at Donald Trump, about 43% of the male residents of the US currently believe that large-scale vote fraud has been committed in the presidential elections of 2020. The other male 57% are just looking uncomprehending at such a belief, since it can only survive if you completely ignore the facts. Apparently this is also the case with this neurological ‘We are our Brains’ brainwashing. It’s a belief. Verified facts are completely ignored. Entire tribes believe it. Of course you are free to believe what you want, but this is a belief with major consequences for science, humanity and its future.

A lawsuit

Suppose the question of the origin of consciousness were the subject of case law. In such a fictitious case, consciousness is accused of masquerading as an objectively existent thing when, according to the indictment, it is just a hallucination of our neurons. Therefore, its right to exist as an original phenomenon is dubious and unfounded. A verdict would have major consequences for our society. Fortunately, there are facts to consider, both for and against consciousness as a product of our neurons. So let’s put consciousness in the dock, and ask the judge to make a legal decision based on scientifically established facts.

The prosecution:

Your Honor, if I get a blow on the head, I lose consciousness. If I drink a lot of alcohol, my consciousness will behave less well. When I get demented and my brain is affected I forget who I am and who my husband is. With a dose of LSD or DMT I experience the most fantastic hallucinations. These are all examples where the cohesion and/or the chemistry in my neurons is affected. I am my brain. My consciousness pretends to be real, but it is only an illusion.

The defense:

Your Honor, what has been put forth is by no means conclusive evidence that consciousness is produced by the brain. The correlation of the electrical behavior of neurons with thoughts and sensations has been demonstrated, but a correlation is not a causal relationship. The fact that many firefighters are usually present at a fire does not mean that their joint presence causes fires. There is no question that the brain plays a role in our consciousness, but it is arguable that the brain is only an instrument of consciousness, to be able to interact with the world, a receiver of awareness with a very advanced filtering capacity.

When I crash my iPhone, it stops functioning, but the content that was ready to be shown or to be played is still there. When I buy and install a new iPhone, this content can be revived again. Much to the amazement and unbelief of someone of the 19th century. Furthermore, fMRI research has shown that when people use drugs such as LSD and DMT, their neuronal activity decreases while the intensity of the hallucination increases. This contradicts the idea that the brain produces their intense experiences and directly supports the filter hypothesis. Finally, you can also ask yourself what it is that experiences that illusion. Those neurons?

The prosecution:

Your Honor, consciousness here apparently masquerades as something that exists outside the physical body and communicates with it in ways unknown to us. This is not possible given generally accepted scientific knowledge. As far as we know there is only matter and energy, and energy exchange can only take place between matter and other matter. No disembodied consciousness has ever been demonstrated in the laboratory. The Cartesian duality, a disembodied spirit in a physical body, is a misrepresentation born of outdated religious beliefs. I think the me, who thinks so, is itself an illusion.

The Judge:

Pardon me, this is an illusion addressing me? Well well, I surely want to hear more of the defence now.

The defence:

Your Honor, if the prosecutor thinks his thinking self is an illusion, I wonder why we should listen to an illusion. And that a disembodied consciousness has not been demonstrated in a laboratory is not proof of the non-existence of a such a phenomenon. The measuring instrument that would be needed is, as far as is known, not yet available. The only known way to perceive consciousness is consciousness. Current scientific knowledge is necessarily incomplete and based on materialistic models, the correctness of which in the past had to be repeatedly adjusted or even rejected. That energy exchange can only take place between matter is not a fact but an unproven dogma. Quantum physics, the most successful physical theory currently, seems to indicate strongly – by delayed choice experiments, among other things – that the observer creates the observed. Matter thus seems to become the illusion, not the perceiving consciousness. But it is not matter that is in the dock here to be defended.

There are excellently documented cases of individuals where no brain activity at all could be detected – flat EEG and ECG – while this person was observing the environment from a point of view different from the usual, that is, observing the world from somewhere outside the body. In support of this defense I offer here an excellent verified file of cases where brain and normal sensory perception could not function, but where the person concerned clearly consciously perceived and remembered details that were verified on correctness in a way that cannot be explained with a strict material model of reality. Something that means that strictly material theories are limited in their explanatory models and that full awareness at the time of the Near-Death experience cannot be a product of complex neuronal activity. A clear awareness going together with a cerebral cortex that is demonstrably no longer functioning cannot be reconciled with the idea of an emergent consciousness.

I want to present here also the case of the 44-year old man with a tiny brain. His case was published in The Lancet in 2007. The man seemed to function normally with a healthy IQ, but, as a result of hydroencephalitis, he walked around with a skull mainly filled with cerebrospinal fluid. See the x-ray for yourself.

The large black space is the fluid that built up in his brain. Feuillet et al./The Lancet.

Consciousness in this case can hardly be the result of an extremely complicated network of neurons that produce together a pattern within a pattern within a pattern.

Your Honor, finally I would like to add that if I were to say to my GP, “I think the me, who thinks this, is an illusion,” she would be concerned, write a referral to the psychiatrist and think probably, “Oh my, the poor wretch’. But when a neuroscientist says the same their audience apparently listens breathlessly. I beg you to remain critical.

The prosecution:

Your Honor, I hope you will exercise some patience in this matter and will wait until there is conclusive scientific evidence to show that consciousness is a product of the brain and thus is a hallucination. We are confident it will be produced within a few years fom now. That person with so few neurons still had quite a few, as you can see from the x-ray, so apparently not so many are needed for intelligent consciousness as we thought. That proof, that consciousness is a product of the neurons, will come, I assure you. That won’t be long. We are working on it with all our might. I implore you to have confidence in the promise of science and its devoted practitioners. In anticipation of the outcome we are already so sure of, I propose that consciousness should already be given the status of hallucination at this stage. This will, according to our belief, explain completely the emergence of consciousness from matter and, very important, in that way we only need matter to explain the world. Please, let’s not complicate matters more than necessary.

The defence:

Your Honor, it should be well known that at this time any active interest of scientists in consciousness as an independent primary cause that does not originate in matter, could be detrimental to their careers, even if they already had a Nobel Prize. Nevertheless, there is a steadily growing number of scientists who dare to defy this career risk. I therefore I ask you urgently not to base your verdict upon some vague promises, but only on documented and verified facts, even if they do not come from laboratories, and to assign consciousness rightly its status as an actual, independent and original entity. Thank you very much.

An ultra short introduction into quantum physics

Recently I did an online presentation to an audience while I knew I shouldn’t be speaking about electrons, photons and double slit experiments and all that phyicist stuff. Still, I wanted the participants to glean a useful insight into what quantum physics has to say about the world and how it supports the idea of a consciousness that doesn’t depend on our material brain. It worked wonderfully, given the comments and the questions. That is why I am posting this introduction here as well. I’ll start with some basic definitions.

Particles

When we talk about particles, what are we actually talking about?

  • A particle is a concept that originates from classical Newtonian physics. That is, it is a model and therefore does not necessarily have to be the true reality. What follows is therefore only the definition of the concept of a particle. However, one that we usually use when we think and talk about reality.
  • A particle is an object where all of its matter exists within its boundaries. It has clear defined boundaries.
  • A particle has an exact location and speed.
  • Material reality consists of particles and their interactions.
  • Particles cannot pass through each other, they collide and usually bounce back or stick together.
  • Particles exist in place and time but are not part of it.

Waves

When we talk about waves, what are we actually talking about?

  • A wave is a moving excitation of a coherent medium.
  • A wave has no boundaries. The boundaries are those of the medium. The boundaries of a wave in the ocean are the surrounding coasts.
  • A wave has speed and frequency, but not a precise location.
  • That a wave has no boundaries means that the wave is present everywhere in the medium. Every wave in the ocean exists everywhere in the ocean.
  • A wave is not apart from the medium. It is the medium in a state of excitation.
  • Waves do not collide but pass through each other. Their excitations can be added at any time, creating more complex waves. Even standing waves.

Waves and particles

Waves and particles are thus completely different concepts. To claim that something is a wave and a particle at the same time is therefore confusing, it’s nonsense, a sham. Don’t fall for it.

The quantum wave is a non-material wave

A sound wave is a good example of a material wave with the air acting as the coherent medium. Ditto for a wave in water. The quantum wave and its medium, on the other hand, do appear to be non-material, given the following facts:

  • The mathematical dimensions of the quantum wave’s physical properties do not exist in our 3D reality.
  • The immaterial quantum wave of an object gives us the probability of observing that object as a particle when we focus our attention on a certain location at a certain point in time.
  • The outcome of such a focused attention is called a “measurement” by physicists. Physicists do not agree in this regard to what an exact definition of a measurement is. The result of a measurement is, without exception, something that, independent of the instruments used, an experience in our consciousness.
  • That the quantum wave is a probability wave strongly suggests that the quantum wave is something that is not taking place in material reality but in our mind. Probabilities are not matter. They are numbers.
  • The medium in which a non-material wave propagates must be coherent because a wave can only exist in a coherent medium. A good candidate for a coherent non-material medium is, of course, the mind.
  • Prior to the ‘measurement’ – the observation – the observed particle does not exist. This has been confirmed in many experiments and is therefore a major source of cognitive discomfort for many physicists. That discomfort is in turn the source of interpretations that turn out as inconsistent and/or absurd on critical consideration – such as, for example, the multiverse hypothesis – when these try to explain this phenomenon materialistically.
  • There is no known reason why the manifestation resulting from observation – the quantum collapse – should be limited to atomic dimensions. The fact that we experience the world as a permanent presence is no proof that this is indeed the case. The statistical probability that my desk will be in the same place on the next time I observe it is so close to 100% that I don’t have to worry about that at all. Every time I look it is – it materializes – exactly where I expect it to be. The discontinuities are so small I’ll never be able to observe them.
  • Since the quantum wave itself has no boundaries – that is a basic property of a wave – any object can in principle materialize instantaneously at any location in the universe, although that probability is generally extremely small. This may sound far-fetched, but it is the basis of the so-called quantum tunnel effect, where objects materialize on the other side of an impenetrable barrier without being able to pass through it. This effect has been known since 1927 and is at the root of nuclear fusion, all semiconductor technology and also of the efficiency of the metabolism of animals and plants, something that was discovered at the end of the 20th century. Quantum tunneling can happen even faster than the speed of light.
Quantum Tunnels Show How Particles Can Break the Speed of Light – Quanta Magazine october 2020

Conclusion

An observation (measurement) thus seems to bring the manifestation about of the observed object. This is not necessarily a cause-effect relationship. It is conceivable and even credible that perception and manifestation are identical, that they both do take place in the mind. Hopefully it has become somewhat clear to you how quantum physics does not contradict the idea of a consciousness that exists independently of our brain and can survive death. It even supports it.

For those people who object that it would then be sufficient to simply close their eyes to an oncoming bus or train, for them I have this answer: train and bus are examples of macro objects. It is true that as long as they are not observed, they are a non-material probability wave. The probability of being hit by that bus is 99.999999999999% (or closer to 100%). So, closing your eyes will not help very much, and it should not be forgotten that we have more senses than eyes alone. Finally, the bus driver is also an observer, of course. In philosophy the view of the world as being entirely inside mind is called Idealism.

The above is an extremely concise summary of my view as a physicist on the meaning of quantum physics. If you want to know (much) more I have to refer you to my website or to my book. I invite you not to believe me on my word, but to be curious and to do your own exploration of quantum physics. No mathematics needed.

You can see the presentation ‘Quantum Physics and the Afterlife’ I did here.

The role of consciousness cannot be ignored, Quantum Physics confirms despite opposition

As regular readers of my posts and of my book will know, I am of the opinion that quantum physics does not so much prove the primary role of consciousness, however that it certainly strongly confirms it. This is of course a controversial position. As long as accepted science continues to cling to the materialistic frame of mind, there will be scientists who wholeheartedly try to show this as wrong. They want to maintain their there-is-only-matter vision, although the attractiveness of that idea of reality, in which I am only a casual bystander, escapes me. On top of that, there are also people who take consciousness and its survival after physical death seriously, but they prefer to keep quantum physics out of the whole discussion about consciousness.

Heisenberg’s uncertainty principle explained (?) by classic physics

The same goes for those two Finnish scientists who published a mathematical study in September 2020 in which Heisenberg’s uncertainty relation is a result of statistical fluctuations in space-time, somewhat comparable to the Brownian motion of microscopic particles in a liquid. These Finns, not quantum physicists by the way, would have shown that Heisenberg’s uncertainty relation is not a consequence of the measurement – the observation – of the particle, but is something that takes place entirely in the classical Newtonian world. One of the two authors, Jussi Lindgren, is not a mathematician but is a mathematically very educated person. This he states in his LinkedIn profile:

Part-time doctoral student at Aalto University School of Science, main interests in optimal control theory with applications in macroeconomics, physics and finance. Other academic interests include nuclear engineering and philosophy of science. Quantum physics, relativity and theoretical physics are key interests of mine as well.’

Their publication does indeed contain a impressive piece of complex mathematics. That is not particularly accessible to the layman who, despite his lack of mathematical skills, is interested in the true meaning of quantum physics.

Although my mathematical ability is not what it used to be, I would still like to add a critical note concerning their publication and especially their conclusion. Their conclusion is that the interpretation of quantum physics can be found within the classical Newtonian domain, ie hard objective scientific realism. The Heisenberg uncertainty relation says that there is a fundamental lower limit to the accuracy with which the position and speed of particles can be measured. According to these Finns, the particles in an experiment are permanently objectively present, but are controlled by statistical fluctuations in space-time that make it impossible to measure speed and position with an accuracy greater than Heisenberg’s principle allows. In fact, their approach is an excellently elaborated example of an the ensemble theory in quantum physics. Quantum ensemble theory is only about the statistical behavior of larger ensembles of particles and prefers to ignore the individual particle behavior itself. And therein lies the problem. Ignoring unwelcome facts is not science.

If we hadn’t had the Bell and the delayed choice experiments, I wouldn’t have been able to find good counter-arguments so easily. Their significance cannot be overstated. All Bell experiments have confirmed, with ever increasing confidence and without exception, that two (or more) particles, when they have a common history, are in such a way connected (entangled) that a measurement on one particle immediately makes the other particle exhibit the complementary property, while they did not have that property prior to the measurement. When you assume that those particles exist permanently and objectively, you cannot but assume then that the measured particle communicated faster than light to its entangled partner that it was measured, whereupon the partner ‘decided’ to show the complementary property. A property it did not have before measurement. Such an assumption, as far as I’m concerned, is far beyond what Occam’s Razor recommends us.

And then there are also (fortunately) the delayed choice experiments. These have shown very clearly that the idea of particles that are physically on their way from source to detector, and thus travel materially, cannot be correct, unless you make some rather far-fetched assumptions: about particles that can see into the future, about entangled photons that know that once the position of the other photon has been measured, they should adjust their behavior, showing or not showing interference or not, and, on top of that, retroactively in time. You are of course free to prefer the material view of the world, but then you have to be honest and accept intelligent and instantaneous behavior of elementary particles. Therefore I prefer the idea that it is ultimately the conscious observer who, when he observes an event, also records it for its history as a really happened event. My idea is that it is the conscious observer who is definitely not to be ignored if you really want to be scientific.

An experimental test of non-local realism

Last but not least, I would like to mention here the result of an experiment conducted at the University of Vienna in 2007, one that, in my opinion, has received little attention. In this experiment, the assumption that perception does not affect objective reality was actually tested. By this I do not mean that every measurement always disturbs that which is measured, that was already an accepted fact in classical physics, but that mere observation has an effect on the nature of the observed, although it does not physically touch what is observed. That is what is called a non-local influence.

In this experiment, a complete class of important non-local hidden variable hypotheses has been falsified. These theories presuppose realism. Permanently objectively existing matter. These hidden variable hypotheses propose mechanisms that would explain, for example, the entanglement of photons in Bell-type experiments with effects where they already possessed their polarization all along. They would not manifest it only at the moment of measurement.

The conclusion from this experiment is that we must take the result of a Bell-type experiment and its significance for what being real means, very seriously. We can no longer hope that science can repair the idea of objectively permanent matter of classic physics.

The Omkar Symbol

My book ‘Quantum Physics is NOT Weird’ contains much more information than the original Dutch title. One of this is about the Omkar, the Sanskrit name for Aum. When you study the description of this symbol in more detail the similarity with the idea of Cosmic Consciousness, that I unfold in chapter 12 – A possible Model, is striking.

It’s all in the mind. © P.J. van Leeuwen.

My model of Cosmic Consciousness, as described in my book, has a number of levels:

The four levels of Cosmic Consciousness

  1. Top Level: The Cosmic Consciousness – all-that-is.
  2. An unimaginably large number of individual fragments. Not all fragments are necessarily always conscious of the shared virtual reality or even conscious in the sense we attribute to it. The unconscious state can be seen as the state of deep sleep. Some fragments dream their individual dreams, others share a common dream.
  3. The shared memory. This is an all-encompassing storage of information. This is necessary to be able to share stories, history and experience. Storing any experience as information is responsible for the quantum collapse, the event that the non-physical quantum wave transitions into the observed object. From that moment on, that information is available to all individual participants in the virtual reality. This information store could be what is called the Akashic Records. It is probably not necessary for Cosmic Consciousness to have a dedicated memory to record and contain everything that happens in the virtual reality in its mind. Time is a human experience. It is conceivable that time as we know it does not exist and that all that has happened in the past and will happen in the future exists next to each other in a dynamic ‘now’. To retrieve the memory of a certain event, consciousness only has to ‘visit’ that event. This is reminiscent of Einstein’s block universe which is however static.
  4. The shared virtual reality dream. This is the universe that we experience in the waking state and as happening outside of us, seemingly opposed to our inner world of thoughts and experiences.

De five levels of the Omkar

The five different elements of the Omkar symbol for AUM have been beautifully described in the Mandukya Upanishad.

The AUM or OM character represents the experience of the infinite, the Cosmic Consciousness.
© Wilfredor – Wikipedia

Now compare the four levels of Cosmic Consciousness with those in the Symboldictionary description of the meaning of the Omkar decribed below.

  1. The first curve (upper left) in the Om symbol represents the waking state or the conscious mind experiencing the world.
  2. The second, almost closed, curve (right) is the dreaming state, the subtle world.
  3. The biggest curve (lower left) means the deep sleep state or the casual plane.
  4. The small curve (just below the dot at the top) signifies the absolute reality, atma, the self, or the pure consciousness.
  5. The crown (the dot) signifies absolute surrender.

When curves 4 and 5 are combined they are called the bindu and represent the awakened state.

When I compare with the four levels of the Cosmic Cons­ciousness above, then allright, it’s not an exact match, but it’s close, intriguingly close.

Quantum coherence and life

I’m reading ‘Living Rainbow H2O’ right now. Not an easy book despite the fact that the chapters are short and therefore easy to understand. The writer, Dr. Mae-Wan Ho, uses quite a few abbreviations after once introduced terms, such as CD for Coherent Domain. Something that calls for quite a bit of scrolling back. But it is endlessly inspiring.

Dr. Mae-Wan Ho has done in-depth research into what goes on inside living beings. In general, the molecular structures of cells and viruses are studied by electron microscopy. But then the preparations have already died by the preparation. To look at living organisms with the microscope, she applied polarized light microscopy, a technique that already existed but until then was only used to study minerals. To her surprise and delight, she saw all the colors of the rainbow in the living 1mm moving embryo of the fruit fly.

The Rainbow and the Worm

She saw life unfold in all its splendid colours. Those colors were not only beautiful to look at, but they also told her a lot about the physical processes that took place there. The living cell contains approximately 70% water and it turned out that the processes in and properties of water itself are together responsible for all those colors. Water in living cells behaves like a liquid crystal, which explains the polarization of light going through the cell. This liquid crystal behavior appears to be essential for the chemical processes that run in living cells. This is something that will never be visible with the electron microscope. Ultimately, she concludes that the special properties of water play a major role in the quantum processes that take place in the living cell. All life exhibits quantum coherence. It is the hallmark of life. According to Ho, we see the guiding intelligence of consciousness at work there.

What is quantum coherence?

The quantum wave is an excitation of an immaterial medium. In order to have waves, a the substance of the medium has to be coherent. Which is strange for an immaterial medium. It is striking that if you search for it on the internet you will come across direct relationships with living systems and health. I therefore devoted a special study to it, in which I also came to a better understanding of the efficiency of chlorophyll. I talk about that in my book. After I felt I had a picture of quantum coherence that I could also explain, I dedicated a special page to quantum coherence on my website to it. You can find that page here.

Living water

Ho links quantum coherence to life and consciousness. Quantum coherence is an expression of the consciousness that is behind all the life we perceive. In the interview below, she also points to her finding that water at room temperature is already about 40% quantum coherent. When I now try to picture the enormous amount of contiguous water on this planet that is thus 40% quantum coherent, I get an impression of an enormous awe-inspiring living intelligent being in which all life we know must someday arise. Take a walk along the beach, look out over the sea and muse on it.

A particularly persistent misunderstanding

This kind of quotes do keep popping up in reports about quantum phenomena: “Depending on the way in which it is measured, the quantum object manifests itself as a particle or as a wave.” No, no, and again no, that is not the true image of quantum reality in my opinion. In fact it is severely misleading en confusing.

Such statements create the impression of an object that deliberately adapts to the measurement methods used and then decides whether it shows itself as a wave or as a particle. No wonder many people decide that the quantum world is utterly weird and incomprehensible and stop thinking about it.

This false image, this misunderstanding, has its origins in the image of the world that we received from our earliest memories on. An image of a world existing independently of us and in which we fulfill merely the role of spectator, an accidental bystander who might as well not have been there. We are used to imagining something, every physical thing, as something that simply IS and has always been there. We tend to stick to that way of looking at reality even when, depending on the way we look at it, its properties suddenly appear completely different and extremely ambiguous, like the quantum object mentioned above.

Do we actively create our world?

It is rather unusual to think that things are there BECAUSE we perceive them, that they did not exist before our observation and are no longer there after our observation. If we would opt for that way of thought, things would attain properties that we usually attribute to dreams and thoughts and not to ‘real’ things. This way of thinking about reality is not in keeping with the common perception of the permanence of our world. Yet the quantum world teaches us that our idea of an objective permanent world is most likely false.

Looking at the double slit experiment

The double slit experiment is a crucial experiment in quantum physics able to provide a lot of insight. So let’s take a look at it

Electrons fired at a double slit form an interference pattern.

When we fire a large number of particles, photons, electrons or even large molecules, through a double slit, an interference pattern will be created on the screen after the slits. We see a pattern of light and dark bands. That pattern also arises when we fire particle by particle. Even after a long period of firing single particles, certain areas on the screen appear to be hardly hit, which are the light bands in the picture above.

Such an interference pattern is the result of wave behavior. It occurs because waves reinforce or extinguish each other in certain places depending on their synchronous concurrent or opposite motion, respectively. Watch this YouTube video for a very enlightening demonstration of double slit interference.

There is a mathematical relationship between the spacing of the bands of the interference pattern, the spacing between the slits, the distance from the slits to the screen, and the wavelength, but we don’t need to go into that to understand the meaning of this experiment.

Such an interference pattern of dark and light bands only arises when the originating waves have the same frequency and wavelength. It happens when two wave sources vibrate synchronously. The two slits here function as wave sources vibrating in phase. The rather amazing conclusion drawn from this interference pattern is: “Every particle exhibited wave behavior and must therefore also have been a wave.” This also applies to electrons and even to large molecules of more than 800 atoms.

Catching the particle in the slit

When we adjust the experiment in a way so we can determine for each particle which slit it has gone through, the interference pattern disappears and we get a pattern that you can interpret as two single slit patterns that are projected over each other and therefore are actually indistinguishable from a single slit pattern. Each of the two slits now produces a single slit pattern, which is a single light spot with the highest intensity in the center, in much the same location on the screen.

The correct conclusion is that the waves passing through the slits no longer interfere with each other. The relationship between these two waves running from the slits, which let them extinguish or strengthen each other in fixed predictable places, has disappeared. The often drawn conclusion is that we now see particle behavior instead of wave behavior, which actually makes no sense. A single slit pattern is still for 100% the result of wave behavior, only we no longer observe interference such as occurs with two synchronous wave sources. It seems more like as if every wave, connected to each particle, is now originating from only one of the slits and no longer from both. And that’s exactly what’s going on here.

How we see the world as a collection of things

“.. we can determine for each particle which slit it went through …“. Notice how this sentence is formulated. The implicit assumption here is that there is a particle that travels along a path and that shoots through one of the slits. That is an image that stems from the way we got to know the world around us from childhood. And apparently we find it extremely difficult to let that premise go. Ask yourself: Did the fired bullet travel every part of the path to the target? Or didn’t it?

The simple hypothesis: observation manifests the particle

Now, if only for a moment, try to let go of that premise, set it aside. Imagine now that, there is no particle traveling a path, there only is a wave. A wave that appears to be particularly intimately connected to our perception of the particle. (I will postpone here the effort of trying to understand how this connection works.) A wave that will end when we make an observation. An observation thus means that we seem to manifest the particle at that time and in that location. Immediately after our observation has been made, the particle is no longer there, but the wave is there again starting from where we last observed the particle. Now look again, assuming this hypothesis is right, at the version of that double slit experiment where we could determine which slit the particle passed through. Are we now perhaps able to understand this enigmatic disappearing act of the interference bands somewhat better?

Therefore, try to follow the following five logical steps:

  1. According to this hypothesis, it is the observation, in this case through which slit the particle passed, that made the particle to appear in one of the slits.
  2. Its appearance in the slit implicitly means the end of the wave.
  3. Only at the moment the observation information tells you, the particle manifested and existed in the slit.
  4. Immediately afterwards there is no particle and a new wave leaves the slit eventually ending up on the screen behind the slit.
  5. Since the particle did not appear in both slits – at least let’s assume that there is no magical particle multiplying – we now have only one single wave source.
  6. So there is indeed a wave – between the double slit and the screen – but now there is no more interference, because you need two synchronous vibrating wave sources for it to observe.

This hypothesis – observation manifests the particle – gives thus a complete and logical explanation of the disappearance of the interference when we observe the particle at the slit.

Two time-consecutive manifestations of the particle in a single experiment

Where the wave hits the screen, we do observe a bright little spot. In principle, that is also an observation. So when we set up the measurement in such a way that we can observe in which slit the particle appeared, we create a measurement setup with two consecutive locations for observations – and thus, manifestations. One in the slit and the other on the screen behind the slits. That dual observation is the crucial aspect in an experiment where we do observe the particle at the slit.

So it is confusing to say that the observed object behaves like a wave or a particle depending on the way of observing. In both setups, it is consistently true that there is a wave that results in the manifestation of a particle through an observation. In the setup where we look in which slit the particle appeared, we simply make two consecutive observations, whereby a wave manifests itself twice as a particle. The measurement directly influences the measured object and doing two consecutive measurements at two locations within the setup therefore logically should arrive at a result different from a single measurement done only at the screen. As if you gave during billiards the already rolling ball an extra kick and then got surprised that it influenced the outcome. We really don’t have to assume an intelligent ball for that.

Someone has to hit the balls.

Not a particle and wave at the same time, it’s a probability wave

If we look at it that way, then there is no longer a particle that adapts magically in terms of properties to our way of measuring. The whole process is clear and extremely predictable. As long as we don’t measure the object we want to measure it is a wave. As soon as we measure where and when the object was , we will find the object to have been there. The measurement and manifestation of the object thus become identical! This is a very important and deep conclusion.

Now the question of what that wave is and what it consists of becomes an important one. The answer to that question was first proposed by the physicist Max Born in the early 20th century. In his proposal, the quantum wave is a wave that, when interpreted correctly, gives you the probability per location and time, where and when, to find the object during a measurement. Thus, the quantum wave gives us a prediction of reality but not an exact one. It is a statistical prediction, just like when rolling a dice, the probability of exactly getting a six coming up is 1/6 and that the average outcome of a roll is 3.5. Incidentally, Max Born still assumed that the particle was somehow ‘guided’ by the wave which means that the particle traveled a path, albeit unpredictable. That interpretation was later abandoned by most physicists.

Quantum mechanics is statistics

Statistics is the way in which quantum mechanics accurately predicts the results of experiments. With the enormous numbers of particles that play a role in objects larger than a few micrometres, the outcome of a physical event can be predicted with great precision. Just as the average outcome of a hundred billion throws with an ideal die will be exactly 3.5 with a deviation that we will find only after the 8th decimal place. Many quantum physicists do accept the idea that the particle only manifests itself during measurement, but they disagree about how the measurement achieves this, given the large number of different interpretations. Most interpretations attempt to save the objective permanence of the world but until now these fail to do so convincingly. That there is not a winner since more than 100 years could be an indication of wrong underlying and deeply hidden assumptions. In technical applications, quantum physicists simply use the statistical calculation methods – shut up and calculate – and leave the interpretation to the disputing theorists.

The simplest explanation is usually the best

As I wrote at the beginning, assuming that the ‘thing’ aspect of reality only appears because we are looking and that it does not exist physically when we are not observing, means that the reality we perceive has the same quality as thoughts and dreams. If that is the assumption that provides us with the simplest unambiguous explanation of the double slit experiment, the idea that observing manifests reality might now have become not as strange as it probably sounded to you at first. Applying this hypothesis we are able to visualize every part in the double slit experiment without having to try to imagine something that is simultaneously a particle and a wave, which is impossible. This could mean that our belief that the world is permanently out there, regardless of our presence in it, is a very persistent misunderstanding. That is anyhow my deeply felt opinion. The world is there because we create it when observing it. This also applies to something dramatically destructive like the Covid-19 virus in the end. Such a message should raise of course a number of rather hard questions. For some answers on these have a look at another page on this website.

Experimenter effect in parapsychological experiments?

Dean Radin, chief scientist of the Institute of Noetic Sciences (IONS) has a remarkable succes rate in his experiments. Is this perhaps due to an experimenter effect? Let’s have a look into his double-slit experiments that showed that persons could influence the outcome of a double-slit experiment with their minds.

© The Truth about Forensic Science – The McShane Firm

The experimenter effect is that the experimenter’s expectation influences the outcome of the experiment in such a way that the outcome confirms his expectations. This effect seems to have played a role in Radin’s experiments. Not the best message for parapsychological research you would perhaps think at first glance. But at second glance, Radin’s experiment proves an excellent confirmation of my view that consciousness creates the experienced reality and its history.

Double-slit influenced by the mind

In Dean Radin’s experiment, subjects, sitting in an electromagnetically shielded room, are asked to concentrate on a double slit arrangement and to imagine then that the photons pass through a certain slit. It has gradually been confirmed experimentally and is now considered a fact accepted by most physicists, that gathering information about which slit the photon passes on its way to the screen causes the interference pattern to disappear. An often suggested explanation for this is that this information collapses the state wave already within the passed slit, which means that the photon manifests itself in the slit. Immediately afterwards, a new state wave starts from that manifested photon, that will arrive finally on the screen collapsing there into an observed point of light. Since there is no longer a twin synchronous state wave issuing from the other slit, no interference can take place. The light spot can now also appear in a location that otherwise would be dark if there was interference. The spot can now be observed outside the bright interference ‘bands’. There is no interference, because you need at least two waves for it to happen.

Double-slit experiment showing interference fringes on a screen.

Six series of experiments were conducted between 2011 and 2014, each with the same set-up. Subjects were asked to use their minds to try to influence the photon to pass through a specific slit. If they succeeded, then, according to accepted quantum physics theory, the interference would become less sharp because, as explained above, information about which slit the photon passes through makes the interference disappear.

Experimental set-up in experiments 1 to 4 as described in Radin’s publication. The test subject sits in the chair, T3 is the double-slit device including laser, double-slit and CCD for registration of the interference pattern. The PC is used for showing the fringe effect.

The decrease in interference was recorded by measuring the brightness difference between a maximum and a minimum fringe, the fringe index. The actual procedure was somewhat more complicated, but the experiment comes basically down to measuring the fringe index and comparing it with the subject’s instructed activity. The experiments were conducted in seven series, the seventh one online in 2013 and 2014, i.e. with subjects participating via an internet connection at a physical distance from the experiment. The total number of sessions in the first six series of experiments (not online) was 250 with 153 participants, in the online experiment there were 5738 sessions with 1479 participants.

The overall outcome was that there was indeed a significant effect with a probability of less than 1:166,000 for chance. The subjects were explained what the experiment entailed in advance. To help them focus their attention on the double slit, they were given feedback by showing the change in the fringe index on a screen in the form of a line moving up (deteriorating) or moving down (improving). So they could immediately observe the results of their mind activity and that feature turns out to be an important aspect of the experiment.

A programming error and the end of an interesting hypothesis

The computer program that showed the changes in the fringe index to the subjects was found to contain a programming error in the improved 2014 version. The sign of the fringe index was consistently reversed. A deterioration, because of that programming error, was shown as an improvement and vice versa. What was interpreted by the subject in those 2014 sessions as a deterioration of the fringe index turned out to be an improvement, in other words the opposite of the expectation of the experimenters. The actual outcome of the 2014 study was therefore that a significant improvement in the fringe index was observed. Suddenly the experiment showed results contrary to the expectations of the experimenters.

A more logical interpretation of the experiment

So how do we interpretate this reverse result? What can’t be denied is that the subjects managed to influence the interference fringes significantly with their minds. Not by thinking of photons passing through slits, but simply by trying to ‘think’ a line moving up. Compare this with Helmut Schmidt’s test subjects who were instructed to try to get more green than red flashes. The fact that those light flashes were controlled by a QRNG that produced random zeros and ones that controlled the lights is a technicity, but the test subjects were not given the task to influence the QRNG in producing more zero’s than ones. On top of that, realise that those zeros and ones are mere interpretations of electrical voltages.

In any case, people appear to be able to influence the material reality they observe. But their minds have to be helped apparently by a providing an immediate observable feedback, such as a light or a line of dots on a screen. In my view that is even more remarkable than affecting photons directly. It involves influencing the underlying mechanisms of the observed reality without consciously thinking about these. Processes ‘running under the hood’ of reality are thus influenced in such a way that what we perceive ‘moves’ with what our mind expects. It’s like driving your car by entering a different destination on your route planner without touching the steering wheel.

In order for the line on the screen to move upwards, in the 2014 computer program version, the interference had to sharpen instead of to blur. Interference is the outcome of a wavelike immaterial quantum physics probability distribution. The subjects’ intention to move the line up on their screen thus influenced that probability distribution in such a way that the perceived reality, the manifestation of those probabilities, came to meet their expectations more closely.

In any case, it seems unlikely to me that the subjects were able to directly influence the line on the screen with their minds and that the line movement in turn had a retrocausal effect on the interference. That is reverse causality. The interference fringe change happened in time before, if only a microsecond, than the image movement on the screen. After all, there were computer and internet communication processes that took time between the interference fringe changes and the image of the line moving on the screen before the subjects.

We create the observed reality.

Indeed, we create the observed reality, and backwards in time. But we do that obviously with a part of our mind not directly under our conscious control.

500 books sold in one year in The Netherlands

I’m very proud of this success. Within one year 500 copies of “Kwantumfysica, informatie en bewustzijn” sold through the regular bookshops in The Netherlands. Copies sold through my own network of friends, acquaintances en students following my lectures are not counted here. The work was certainly not in vain.

In the meantime I am steadily working on the English version to which a new chapter on consilience is being added. This is going to be the introduction to that chapter:


14 Consilience

From Wikipedia:

In science and history, consilience (also convergence of evidence or concordance of evidence) is the principle that evidence from independent, unrelated sources can “converge” on strong conclusions. That is, when multiple sources of evidence are in agreement, the conclusion can be very strong even when none of the individual sources of evidence is significantly so on its own. Most established scientific knowledge is supported by a convergence of evidence: if not, the evidence is comparatively weak, and there will not likely be a strong scientific consensus.

In this book, starting with the scientific revolutions of de 17th century and, following the threads of its developing history until today, we have arrived at a perhaps baffling and remarkable result, hard science – physics – today is not in conflict with the idea of the existence of an of the body independent consciousness, also called the survival hypothesis. On the contrary, it supports it.

However, should this idea only surface after studying quantum physics and nowhere else in the science domain, this support would be as whacky as a table supported by only one leg. Therefore, the question is, is survival supported by published scientific research in other domains? Indeed, it is. Some of this research was already mentioned in preceding chapters. It is time now to pay a little bit more attention to all published and reviewed evidential material concerning consciousness being independent of the material body.


SSE Conference 2019 on consilience – Broomfield, Colorado

“In science and history, consilience refers to the principle that evidence from independent, unrelated sources can “converge” on strong conclusions. That is, when multiple sources of evidence are in agreement, the conclusion can be very strong even when none of the individual sources of evidence is significantly so on its own”. Wikipedia

Dean Radin presenting

The 38th Society for Scientific Exploration (SSE) conference was held from June 5-8 in Broomfield Colorado. The theme was “consilience” whereby evidence from diverse and independent sources can be used as valid support for scientific theories. For example, on the one hand in quantum physics a conscious observer seems to be needed to trigger the so-called quantum collapse, on the other hand in current medical science applying advanced life-saving interventions the growing numbers of validated near-death experiences can no longer be ignored. So, in both very different domains, the idea of non-matter-dependent consciousness is confirmed.

Within three days 34 presentations of approx. 20 minutes were held, whether or not supported with PowerPoint slides, offering also the opportunity for three to five questioners after every presentation, and 17 poster presentations set up in the hall in front of the conference hall, for which one and a half hours had been set aside on day 2. Personally, I thought that part was the most accessible because you could come quickly in direct contact with the poster’s creator.

To be honest, in my opinion there were some poster presentations actually deserving a full presentation and vice versa there were presentations that could have been better scheduled as poster presentations.

To download a more extensive report click here.