Schrödinger’s stopwatch

Een retorische truc

Toen Erwin Schrödinger in 1935 zijn gedachte-experiment met een kat in een gesloten doos aan zijn collega’s, en in het bijzonder Bohr en Heisenberg, presenteerde om het absurde van de Kopenhaagse interpretatie van de kwantumfysica aan te tonen gebruikte hij een retorische truc. Hij introduceerde een levend wezen in het experiment dat in een kwantumsuperpositie zou komen te verkeren. Eigenlijk introduceerde hij daar tussen neus en lippen door bovendien al iets waar Bohr in datzelfde jaar een naam aan zou geven, verstrengeling, tegenwoordig breed geaccepteerd onder fysici. Maar mag je een element introduceren in je experiment, al is het een gedachte-experiment, waarvan eigenlijk niet bekend is wat het nu precies is? Want wat is leven?

Wat is leven eigenlijk?

We kennen het onderscheid tussen leven en dood, althans dat menen we te kennen. We herkennen het wanneer het leven uit een voorheen levend wezen verdwenen is, het overgegaan is in de staat van inerte dode materie. Laat nu de natuurkunde net die wetenschap zijn die zich bezighoudt met dode materie, niet met levende wezens. Een levend wezen heeft een aantal kenmerken, waaronder homeostase en doelgerichtheid, maar is het helder waar deze kenmerken op gebaseerd zijn, wat hun oorsprong is? Een van de grote problemen bij orgaandonors is het correct vaststellen van de dood van de donor zodat het verwijderen van de nog bruikbare organen kan beginnen. We hebben nog geen meetinstrument voor leven, een test die met 100% zekerheid vaststelt of een organisme leeft of dood is. Het is daarom niet zo gek dat Schrödinger in zijn latere carrière een serie lezingen heeft gegeven met als onderwerp “Wat is leven”. Daarmee gaf hij wel het startschot voor wat nu kwantumbiologie heet.

Een fysisch correct gedachte-experiment

Ook gedachte-experimenten dienen fysisch correct te zijn, alles wat in het experiment wordt gebruikt dient nauwkeurig en zonder ambivalentie omschreven te zijn. Einstein was daar een meester in. Dus eigenlijk mag Schrödingers gedachte-experiment niet als een correct fysisch experiment beschouwd worden. Dus laten we die valselijk geïntroduceerde levende kat er nu maar uit laten en vervangen door iets dat wel fysisch goed omschreven kan worden, dode materie. Een klokje of stopwatch bijvoorbeeld dat tot stilstand gebracht wordt door het vuren van de geigerteller.

Het Schrödinger stopwatch experiment: Een hermetisch gesloten doos bevat een radioactief atoom waarvan bekend is dat de kans dat het na een uur vervallen is 50% is. Het is volgens de Kopenhaagse interpretatie niet te voorspellen wanneer het atoom vervalt en dat is nog steeds de gangbare opinie onder fysici. Als het atoom vervalt produceert het radioactieve straling die door een geigerteller, ook in de doos, wordt gedetecteerd. Het signaal van de geigerteller wordt gebruikt om een lopende stopwatch, ook in de doos, te stoppen. We wachten nu een uur en openen dan de doos om te zien of en wanneer de stopwatch gestopt is.

De Kopenhaagse interpretatie zegt ons dat het atoom, de geigerteller en de stopwatch één gezamenlijke superpositie van kwantumtoestanden vormen, verstrengeling dus, zolang de doos dicht is en er nog niet gemeten is. Zodra wij de doos openen stort de kwantumgolf in en observeren wij de gematerialiseerde inhoud van de doos. Stel nu dat de stopwatch gestopt blijkt te zijn na 44 minuten, dus 16 minuten voordat de doos geopend werd. Wij constateren dus dat het atoom 16 minuten geleden verviel. Realiseer je nu eens dat de stopwatch pas materialiseerde – met de wijzer op 44 minuten – bij het openen van de doos. In het hele uur daarvoor was er geen lopende of stopgezette stopwatch, maar een niet-materiële verstrengelde toestandsfunctie van de inhoud van de doos.

De waarnemer creëert ook de tijd

Ziedaar – logisch voortvloeiend uit de Kopenhaagse interpretatie – de oorsprong van de tijd. De waarnemer creëert niet alleen de materie die zich aan ons voordoet, maar ook – met terugwerkende kracht in de tijd – het moment waarop dat gebeurde. We creëren dus met onze waarneming ook de tijd. Een verbluffende conclusie. Geen wonder dat de Kopenhaagse interpretatie niet zo populair is onder de fysici. Maar die andere hypotheses zijn nog veel onwaarschijnlijker.

Als u hier nog twijfelt, verwijs ik u daarom naar de uitgestelde keus experimenten die eveneens retrocausaliteit lijken aan te tonen – niet dat van Kim et al. van 1999, daar zit een fout in de opzet en in de interpretatie – maar die net zo goed of zelfs beter uit te leggen zijn als de achteraf creatie van historie en tijd.