Soms kom ik in een boek, dat eigenlijk niet over kwantumfysica gaat, ineens een tekst tegen die mij juist bijzonder aanspreekt in het kader van mijn idee dat de kwantumfysica een belangrijke boodschap heeft voor de mensheid die tot op vandaag door het merendeel van de wetenschappers nog niet is erkend.
Een wetenschapper van formaat
Malcolm Lyall-Watson is een wetenschapper van breed formaat. Hij is botanist, zoöloog, bioloog, antropoloog, paleontoloog en etholoog. Hij was o.a. directeur van de dierentuin van Johannesburg en heeft natuurseries voor de BBC geproduceerd. Watson is een avonturier én een boeiend verteller. Dat heeft geresulteerd in een serie boeken waarvan ik er kortgeleden pas één heb gelezen en dat smaakt naar meer.
Het gaat mij hier om een passage in zijn boek ‘Gifts of Unknown Things’ waar hij de kwantumfysica in drie pagina’s bijzonder helder uit de doeken doet in een poging tot verklaring van zijn belevingen op een klein Indonesisch eiland waar de lokale bevolking bijzondere verschijnselen als onderdeel van het dagelijks leven aanvaard. Ik kan het volledige boek aanraden, alleen al om het soepele leesplezier ervan.
Het boek als metafoor van de toestandsgolf
Maar dan hier het stuk waar het omgaat: Watson presenteert hier een heel goed begrijpelijke metafoor over de kwantumfysische werkelijkheid als een boek waar elk paar bladzijden een van de oneindige mogelijke toestanden van het universum bevat. Waar het boek openvalt is onvoorspelbaar maar het boek is zodanig gebonden en gebruikt dat het wel een voorkeur vertoont voor zekere bladzijden. Zolang het boek nog dicht ligt is alles mogelijk, alle bladzijden – alle mogelijkheden – zijn nog open. Dat is de situatie dat de toestandsgolf nog niet is ingeklapt. Het openen van het boek is dus de meting, de waarneming van de waarnemer waarbij slechts één paar bladzijden nu leesbaar is. Maar eigenlijk is dus alles mogelijk. Sumo – die in de tekst genoemd wordt – is een van de bewoners van het eiland die vanwege zijn geloofssysteem niet kan aanvaarden wat hij ziet totdat een dramatische afloop nodig is.
A Modern Physics Problem
“Modern physics has a problem. In Newton's time, concern was directed largely at measuring things, because he believed, as many people still do today, that everything was knowable, and it was just a matter of clear thinking and lots of hard work. It was felt that the collection of information was vital and that when enough was available, the rest could be calculated or inferred. So classical physics for two centuries concerned itself almost entirely with the motion of bodies and the force of fields.
Then Heisenberg showed it was impossible to determine exactly the position and momentum of any body at a single instant in time. This discovery in itself would have been of only academic importance if it had not also shown that changes were necessary in some of the most basic equations of physics. The changes were made, and they resulted in the development of quantum mechanics, and this has begun to bring about a major philosophical revolution.
Physics is concerned with systems. As an example, let's choose a system made up of a number of moving particles that happen to look like the letters of the alphabet. The old physics had its classical equations of motion which were supposed to be able to calculate the complete state of such a system. Let's say that what they had in mind was an arrangement something like this page of this book. A pattern in code which would need deciphering but which could be used, they thought, like the Rosetta Stone, to understand the language and to predict the form of all future states, the pattern on all pages that might precede or follow this one.
The new physics says fine, but there is a problem. There is no such thing as a single state. Each system has an infinite number of possible states, and it exists in all of them simultaneously. Quantum mechanics recognizes not the page, but the whole book as a more valid expression of the pattern of a system at any one moment in time. In fact, it goes a lot further than this thin book can, because it needs an infinite number of pages.
Now, when we try to observe a physical system, when we attempt to make a measurement, we do not find a particle moving at a number of velocities, located in widely different positions. We catch the system in one of its infinite number of states. When we open a book, we see only one of the many different pages. With the book lying closed on the table in front of you, all those pages or states already exist, and any page is possible. The probability is not necessarily equal; there is usually a bias built into the binding which makes the book open more easily at a well-thumbed page. But with the covers closed, the system is open. It is a multiple state and enters a single state only when a reader comes along to take a measurement or make an observation.
In the words of quantum mechanics, an observer collapses the system into one of its component states. He is not part of the system, he is not one of the letters that make up the pattern on the pages, and he cannot be included in the equations. But neither can he be left out, because without him there cannot be any particular pattern. Without an observer, there is no description; but no description can be considered complete unless it takes into account the effects of the observer who made it. There is no such thing as an objective experiment.
This is the measurement problem, and it has left much of the physics community in a state of considerable disquiet. There are inevitably a number of unconvinced Newtonians (like Sumo) who are doing their best to discredit this interpretation, but so far they have had very little success. The uncertainty just won't go away. In fact, it gets more alarming all the time.
When a system is observed, it collapses into one of its states. But what happens when there is more than one observer?
Science refuses to accept as valid any measurement made by only one person. The experiment has to be repeatable and produce the same result. So when two scientists in widely separated laboratories succeed in making the same measurement, when they get the book to open at precisely the same page, there must be some factor which at that moment puts them on common ground. They must be linked. This linkage, which provides them both with the same page number, is a procedure that we call experimental protocol. It has to be followed precisely or the experiment will "fail"—the book will open elsewhere. It is a very strict procedure with a precise set of rules which require that individuality be held as far as possible in abeyance. It suggests that the scientific approach is a ritual, an incantation, a set of magic words and gestures for producing the desired effect.
And what if there are two observers stationed at the same vantage point? Assume that the two scientists involved in this work happened to be together in the laboratory when the experiment was completed successfully for the very first time. They were exploring new territory, so there was no established protocol; they were simply following a hunch. They collapsed the system and exposed one of its states. Both made the same observation. They saw the same page. This could happen only if the observation process itself united them in some way, or if one of them saw the state first and imposed his view of it on the other. Both sides in the quantum-mechanical argument support the theory of relativity which says it is not possible to put either of the observers first. So that leaves us with only one possibility. Observers of the same state at any moment in time are coupled. And if there are more than two, they are grouped. And as joint observers are often too far apart to hold hands or make any normal physical contact during the process of observation, they must be united by some nonphysical factor.
There is only one nonphysical entity that is nevertheless real and sufficiently widespread to be held responsible.
Our consciousness.”
Uit: Gifts of Unknown Things by Lyall Watson published by Inner Traditions International and Bear & Company, © 1991. All rights reserved.
http://www.Innertraditions.com
Reprinted with permission of publisher.
Helemaal mee eens.
Ir. Paul J. van Leeuwen MSc studeerde af in de technische natuurkunde in 1974 aan de TU Delft. Kwantumfysica was nog geen onderdeel van zijn curriculum toen. Hij behaalde tijdens zijn werk in de automatisering in 1993 een master of science in kennistechnologie bij het CIBIT verbonden aan de Utrechtse universiteit.
Veel later in zijn carrière ontdekte hij de kwantumfysica en haar connectie met informatie en bewustzijn. Na zijn pensionering startte hij postacademische cursussen in kwantumfysica, informatie en bewustzijn.
De inhoud van zijn cursussen is samengevat in zijn boek ‘Kwantumfysica, informatie en bewustzijn’. Dit boek is ook in het Engels gepubliceerd onder de titel: ‘Quantum Physics is NOT Weird’.