Einstein was geen voorstander van de fundamentele onzekerheid van de kwantumfysica. Het idee dat de werkelijkheid permanent en objectief was en dat de waarnemer geen rol van betekenis speelde heeft hij hardnekkig volgehouden. Toch speelt de waarnemer best een belangrijke rol in zijn bekendste werk, de relativiteitstheorie. Juist als je aanneemt dat de waarnemer het waargenomene ‘waar’ maakt en dus eigenlijk creëert dan biedt zijn aanpak van de relativiteit van ruimte en tijd een verrassende uitkomst.
Speciale relativiteit
De speciale relativiteitstheorie is heel goed te volgen met Pythagoras en een dosis middelbare school algebra. Maar dat ga ik hier nu niet doen. Daar is heel wat over te vinden op het internet. Lees daarvoor bijvoorbeeld: https://www.quantumuniverse.nl/relativiteit-6-tijdsdilatatie.
Een uiterst belangrijk uitgangspunt voor Einstein was dat het universum er in principe hetzelfde uit moet zien voor twee waarnemers die zich ten opzichte van elkaar bewegen. Uiteindelijk is dat een symmetrie overweging. Symmetrie is een belangrijk criterium in de theorieën van de fysica sinds Emmy Noether die introduceerde in 1918. Hij combineerde die symmetrie overweging met het inzicht dat de waargenomen lichtsnelheid – in vacuüm – in alle omstandigheden hetzelfde moest zijn. Dat volgde uit de vergelijkingen van Maxwell voor elektromagnetische golven en was indirect bevestigd door de experimenten van Michelson en Morley die de snelheid waarmee de aarde door de veronderstelde ether snelde wilden vaststellen door verschillen in de snelheid van het licht in verschillende richtingen te meten. De uitkomst daarvan was dat ze geen verschillen in snelheid konden meten, hoe nauwkeurig hun experimentele opzet ook was geconstrueerd.
Meerijden op een lichtgolf
Daarbij kwam dat Einstein zich al jong had gerealiseerd dat je licht niet kunt inhalen of zelfs maar bijhouden. Als je licht zou kunnen bijhouden dan zou de elektromagnetische golf van Maxwell vanuit dat meebewegende standpunt gezien niet meer oscilleren maar er vanaf dat standpunt uitzien als een bevroren golf. Maar omdat de voortplanting van de golf juist wordt veroorzaakt én in stand wordt gehouden door de onophoudelijk oscillerende beweging ervan kon dat niet kloppen. Licht moet daarom voor elke waarnemer altijd met 300.000 km/s bewegen. Dat volgt onbetwist uit Maxwells vergelijkingen.
Einstein stelde zich nu twee waarnemers voor die zich ten opzichte van elkaar bewegen en die allebei dezelfde snelheid van het licht zouden moeten waarnemen. Stel je een lichtbron C voor die voor waarnemer Alice stilstaat. Alice ziet het licht van C met c = 300.000 km/s op haar af komen. Waarnemer Bob suist met grote snelheid, zeg 1/10 van c, op bron C af. Alice bedenkt nu dat het licht dat van C Bob tegemoet komt voor Bob dus met 11/10 van de lichtsnelheid moet bewegen. Ik hoop dat je de redenering van Alice kunt volgen. Probeer anders aan twee auto’s te denken die elkaar tegemoet rijden terwijl Alice langs de kant van de weg toekijkt. Auto met bestuurder Bob rijdt met 10 km/u en auto C rijdt met 100 km/u Bob en Alice tegemoet. Auto C staat hier voor het licht dat op Bob en Alice afkomt. Alice constateert (met radar) dat de snelheid van auto C 100 km/u is en ook dat Bob en auto C elkaar tegemoet snellen met 110 km/u. Stel nu dat Bob de snelheid van de tegemoetkomende auto C ten opzichte van hem ook als 100 km/u zou ervaren. Dat zou kunnen als het klokje van Bob met 10/11 van de snelheid van het horloge van Alice beweegt. En niet alleen het klokje van Bob maar ook Bobs volledige beleving van tijd zou vertraagd moeten worden opdat Bob de snelheid van auto C ook echt als 100 km/u beleeft. Bob gaat in dat geval wat trager leven. Wat Alice betreft wordt Bob nu ook langzamer ouder dan Alice.
Terug naar het licht nu dat altijd door elke waarnemer wordt ervaren met een constante snelheid. Als Bob ten opzichte van Alice beweegt met 1/10 van de lichtsnelheid én Bob ziet het licht toch bewegen met 300.000 km/s, dan kan dat als de tijd voor Bob vertraagt met 10/11. Bob ervaart dat niet zo omdat hijzelf in zijn vertraagde tijdcapsule zit.
Deze versimpelde inschatting van de tijdvertraging van Bob is niet 100% correct want er gebeurt ook wat met de meetlatten van Bob, maar het gaat er mij om dat je de manier van redeneren aanvoelt. Wil je dit helemaal goed doen dan komt daar zoals al gezegd wat algebra en Pythagoras aan te pas en wordt de tijdsdilatatie, het uitrekken van de tijd van Bob, beschreven met:
Hier is v de snelheid van Bob ten opzichte van Alice (of van Alice ten opzichte van Bob). Als je hier voor v 1/10 van de lichtsnelheid c invult dan blijkt het klokje van Bob 0,5 % langzamer te moeten lopen dan het klokje van Alice. Nu halen we het symmetrie principe dat Einstein toepaste erbij. Er is geen absolute snelheid, snelheid is altijd relatief. Bob, die zichzelf als stilstaand ervaart, ziet Alice zich met 1/10 van de lichtsnelheid van hem af bewegen. Dus Bob ziet het klokje van Alice ook met 0,5 % vertraagd. Dit lijkt paradoxaal maar de theorie klopt en is talloze malen experimenteel bevestigd. Het gaat er om dat Bob en Alice hun klokken pas kunnen vergelijken als ze bij elkaar komen en daarvoor moet minstens een van hen omkeren en versnellen en vertragen. Dat doorbreekt de symmetrie.
Aan de bovenstaande tijdsdilatieformule kun je al zien dat de maximumsnelheid die in het universum geldt 300.000 km/s is. De term onder het wortelteken wordt negatief als v groter wordt dan c, wat de tijdsdilatatie imaginair zou maken. Dat is jammer want daarmee zijn niet-imaginaire uitstapjes naar zelfs de dichtstbijzijnde sterren voor ons onmogelijk geworden.
Vanuit Alice gezien worden Bobs meetlatten ook korter in de richting van de beweging. Voor volledigheid is daarom hier ook de formule voor het korter worden van snel bewegende meetlatten weergegeven, de zogenaamde Lorentzcontractie:
Dat dit de gemoederen in de eerste helft van de 20e eeuw zeer bezighield hoeft geen betoog. Einstein vond dat de waarnemers in dit verhaal geen essentiële rol speelden. Ze konden volgens hem net zo goed weggedacht uit de vergelijkingen. Snel bewegende klokken zouden vanzelf langzamer lopen, snel bewegende meetlatten zouden korter worden zonder dat daar een waarnemer aan te pas hoefde te komen. Een dergelijke elasticiteit van ruimte en tijd en van de materiële objecten daarin was en is moeilijk te bevatten maar is steeds weer experimenteel bevestigd. Wij, de fysici, zijn er nu min of meer aan gewend geraakt maar echt begrijpen doen we het niet.
Einstein contra de kans-interpretatie van de kwantumfysica
Einstein heeft de kwantumfysica op de kaart gezet door zijn verklaring van het foto-elektrisch effect, waar hij de Nobelprijs voor ontving. Licht bestaat uit deeltjes met een energie per deeltje volgens de Planck-formule (f staat hier voor de frequentie):
Maar daarna heeft hij vrijwel alleen maar tegen de kwantumfysica en vooral haar implicaties geageerd, tevergeefs. Vooral tegen de kans-interpretatie van Bohr, Heisenberg en Born: dat de toestandsgolf, de oplossing van de Schrödingervergelijking, de kans weergeeft dat het deeltje bij meting op een gegeven locatie en tijd wordt aangetroffen. Dat ging recht tegen Einsteins beeld van de wereld als een objectief permanent bestaande verzameling van materiële objecten in. Einsteins bezwaar is in die geest begrijpelijk want een kans is geen objectief materieel object, maar het is iets dat zich in onze geest afspeelt. Een gedachte.
En dat is nu precies mijn eigen beeld van hoe het universum werkt. Alles wat we ervaren speelt zich af in de geest. De waarneming van het gemeten deeltje wordt daarmee identiek aan de gedachte eraan. De ervaring is dan hetzelfde als de creatie ervan. Dat verklaart voor mij ook zo goed waarom de wetten van de natuurkunde zich gedragen volgens wiskundige formules. Dat is iets waar veel fysici, ook Einstein, hun verwondering over hebben uitgesproken. Waarnemers spelen dus juist een onmisbare rol in het universum, ze creëren het. De geest gebruikt wiskunde voor de creatie van het universum.
Tijd en ruimte zijn concepten van de geest.
Dat idee maakt zaken als de trager verstrijkende tijd, de krimpende meetlatten en de gekromde ruimte van de algemene relativiteit ineens veel begrijpelijker. In een droom kijken we daar ook niet echt van op. Er is geen echte objectieve tijd buiten ons die vertraagt, er is geen objectieve ruimte die krimpt, het speelt zich allemaal af in de geest van iedere waarnemer.
Science Fiction?
Dat geeft hoop voor de mogelijkheid van exploratie van de kosmos. De maximumsnelheid in het universum dat wij waarnemen – die van het licht – is dus iets dat de geest zich op dit moment zelf heeft opgelegd. Maar zodra we zouden kunnen aanvaarden dat tijd en ruimte zich binnen de geest afspeelt gaat de mogelijkheid open dat we die beperking zouden kunnen afleggen. Reizen binnen de geest is niet aan de relativiteitsbeperkingen gebonden. Dit is volgens mij ook de juiste interpretatie van verstrengeling en instantane werking over grote afstanden zoals door alle Bell testen steeds wordt bevestigd. Reizen door het universum door middel van de geest zou zelfs dé manier kunnen zijn, een die elders in dit onafzienbaar groot universum bestaande intelligente wezens hebben ontdekt om ondanks Einsteins snelheidslimiet door de kosmos te reizen. En ons te bezoeken. Er zijn al experimenten uitgevoerd die bevestigen dat kwantum-tunneling snelheden groter dan die van het licht laat zien.
Als een uitdovende vuurpijl
Dat het universum een creatie is van de geest geeft ook hoop voor wat betreft de entropie-dood van het universum die de fysica ons al anderhalve eeuw voorspelt. Al is dat dan in de onafzienbaar verre toekomst, het blijft een somber beeld. Waar is dat fantastische schouwspel eigenlijk allemaal voor geweest als dat het einde moet zijn? Maar als het universum het product van de creatieve geest is, dan is dat beslist geen noodzakelijk einde van alles. Integendeel.
Conclusie
Wat ik wil met dit verhaal wil zeggen is dat de kans groot is dat twee ogenschijnlijk onverenigbare theorieën heel goed samen te voegen zijn als we de rol van het bewustzijn er in gaan betrekken. En dat de begrijpelijkheid daardoor alleen maar zou toenemen.
Ir. Paul J. van Leeuwen MSc studeerde af in de technische natuurkunde in 1974 aan de TU Delft. Kwantumfysica was nog geen onderdeel van zijn curriculum toen. Hij behaalde tijdens zijn werk in de automatisering in 1993 een master of science in kennistechnologie bij het CIBIT verbonden aan de Utrechtse universiteit.
Veel later in zijn carrière ontdekte hij de kwantumfysica en haar connectie met informatie en bewustzijn. Na zijn pensionering startte hij postacademische cursussen in kwantumfysica, informatie en bewustzijn.
De inhoud van zijn cursussen is samengevat in zijn boek ‘Kwantumfysica, informatie en bewustzijn’. Dit boek is ook in het Engels gepubliceerd onder de titel: ‘Quantum Physics is NOT Weird’.